Broadband Top-of-Atmosphere Fluxes from CERES

Norman G. Loeb

Hampton University/NASA Langley Research Center Hampton, VA

Contributors: S. Kato, K. Loukachine, N. M. Smith

November 3rd, 2004, Joint CERES/GCSS/ARM Session (Williamsburg)

Instantaneous Fluxes at TOA and Angular Distribution Models

TOA flux estimate from CERES radiance:

$$\hat{F}(\theta_o, \theta, \phi) = \frac{\pi L(\theta_o, \theta, \phi)}{R_j(\theta_o, \theta, \phi)}$$

where,

$$R_{j}(\theta_{o},\theta,\phi) = \frac{\pi L_{j}(\theta_{o},\theta,\phi)}{\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} L_{j}(\theta_{o},\theta,\phi) \cos\!\theta \, \sin\!\theta \, d\theta d\phi}$$

 $R_j(\theta_o, \theta, \phi)$ is the Angular Distribution Model (ADM) for the "jth" scene type.

Anisotropic Model Scene Type Stratification

Spacecraft/Mission	Cloud	Surface Type	Total
TIROS 2, 3, 4	N/A	N/A	isotropy
TIROS 7 (Arking and Levine, 1967)	Global	Global	1
Nimbus 2, 3 (Rashke et al. 1973)	Cloud/Land	Ocean Snow	3
Nimbus-6, 7 (Taylor and Stowe, 1984; Jacobowitz et al., 1984)	All Cloud	Ocean Land Snow/Ice	4
ERBE (Smith et al., 1986; Suttles et al., 1988)	Clear Partly cloudy Mostly cloudy Overcast	Ocean Land Desert Snow Land-Ocean Mix	12

CERES Single Scanner Footprint (SSF) Product

- Coincident CERES radiances and imager-based cloud and aerosol properties.
- Use VIRS (TRMM) or MODIS (Terra, Aqua) to determine following parameters in up to 2 cloud layers over every CERES FOV:

Macrophysical: Fractional coverage, Height, Radiating Temperature, Pressure

Microphysical: Phase, Optical Depth, Particle Size, Water Path

Clear Area : Albedo, Skin Temperature, Aerosol optical depth, Emissivity

CERES Footprint

CERES/Terra Shortwave ADMs for Different Scene Types

Scene Type	Description
Clear Ocean	Function of wind speed; Correction for aerosol optical depth included.
Cloud Ocean	Function of cloud phase; Continuous function of cloud fraction and cloud optical depth (5-parameter sigmoid).
Land & Desert Clear	1° regional monthly ADMs using Analytical Function of TOA BRDF (Ahmad and Deering, 1992).
Land & Desert Cloud	Function of cloud phase; continuous function of cloud cover and cloud optical depth; uses 1°-regional clear-sky BRDFs to account for background albedo.
Permanent Snow	Cloud Fraction, Surface Brightness, cloud optical depth
Fresh Snow	Cloud Fraction, Surface Brightness, Snow Fraction, cloud optical depth
Sea-Ice	Cloud Fraction, Surface Brightness, Ice Fraction, cloud optical depth

CERES/Terra Longwave & Window ADMs for Different Scene Types

Scene Type	Description
Clear Ocean, Land, Desert	Ocean, Forest, Cropland/Grass, Savanna, Bright Desert, Dark Desert, precip. water, lapse rate, skin temperature
Clouds Over Ocean, Land, Desert	Function of precip. water, skin temp., sfc-cloud temp. diff; continuous function of parameterization involving cloud fraction, cloud and sfc emissivity, sfc and cloud temp.
Permanent Snow Fresh Snow Sea-Ice	Each a function of cloud fraction, sfc temp, sfc-cld temp diff

Validation

SW Flux Direct Integration Test June ED1

Flux(ADM) - Flux(DI)

All-Sky **Daytime** Longwave Flux Direct Integration Tests (DJF)

TRMM ADMs F(ADM) - F(DI) MN DIFF $-0.13 W m^{-2}$ RMS Diff $1.45 W m^{-2}$

Terra ADMs F(ADM) - F(DI) MN DIFF $-0.04 W m^{-2}$ RMS Diff $0.93 W m^{-2}$

Observed and ADM Anisotropy Over ARM SGP-Overcast

Instantaneous TOA Flux Consistency Tests

- Convert imager nadir visible radiance to broadband flux
- Compare off-nadir CERES flux with nadir flux inferred from imager visible radiance
- 41 global alongtrack days over 2 years

Clear-Sky Multiangle Consistency Test [SW Flux (θ =50-60) – SW Flux (Nadir)]

- Use CERES in alongtrack mode
- Compare TOA fluxes from the same scene observed at oblique and nadir view angles. Are they consistent?
- Clear-sky fluxes from new CERES
 Terra ADMs show a factor of 2-3
 improvement in consistency
 over forest, snow and sea-ice
 compared to CERES TRMM
 ADMs.

Relative RMS Difference (%)

Instantaneous TOA Flux Error by Cloud Property

Instantaneous **SW** TOA Flux Consistency $(F(\theta=50^{\circ}-60^{\circ}) - F(Nadir))$

Clear-Sky

Region	Mean SW Flux	Bias	RMS	No. FOVs
	(W m ⁻²)	(%)	(%)	
Tropics	223.3	0.6	3.7	32,352
Midlat	163.1	0.5	4.9	15,117
Polar	293.0	-2.0	6.5	19,105

All-Sky

Region	Mean SW Flux	Bias	RMS	No. FOVs
	(W m ⁻²)	(%)	(%)	
Tropics	282.6	8.0	8.6	202,639
Midlat	347.4	0.7	6.3	394,018
Polar	292.0	-1.9	9.0	172,998

Instantaneous **LW** TOA Flux Consistency $(F(\theta=50^{\circ}-60^{\circ}) - F(Nadir))$

Clear-Sky

Region	Mean LW Flux	Bias	RMS	No. FOVs
	(W m ⁻²)	(%)	(%)	
Tropics	307.3	-1.1	1.8	38,830
Midlat	285.5	-0.9	1.7	23,929
Polar	204.1	-0.8	2.7	17,520

All-Sky

Region	Mean LW Flux	Bias	RMS	No. FOVs
	(W m ⁻²)	(%)	(%)	
Tropics	282.2	-0.8	3.0	266,246
Midlat	234.3	-0.9	3.8	340,387
Polar	200.5	-0.6	3.3	147,239

Cloud Radiative Forcing: ERBE vs CERES

CERES ERBE-Like and SSF SW TOA Flux: Clear-Sky (DJF 2000-2001)

-20

-15

CERES ERBE-Like and SSF SW TOA Flux: All-Sky (DJF 2000-2001)

-60

-90

-20

-15

10

15

20

Global Difference: 0.49 W m⁻²

CERES ERBE-Like and SSF SW Cloud Forcing (DJF 2000-2001)

-20

-15

15

20

Model vs Obs Comparisons

M. Zhang

Net Cloud Radiative Forcing in Different Dynamical Regimes as Defined by Monthly Mean 500 hPa vertical velocity

From S. Bony et al. (2003)

Net Cloud Radiative Forcing by Cloud Type (December 2001)

Net Cloud Radiative Forcing (W m⁻²)

Summary

- CERES merges data from MODIS, CERES and GMAO to produce self-consistent aerosol-cloud-radiation data products.
- These data have been used to develop new Angular Distribution Models (ADMs) based on 2 years of CERES Terra measurements.
- CERES TOA flux uncertainties from new CERES ADMs:
 - => Regional mean TOA flux : < 1 W m⁻²
 - => Instantaneous SW TOA flux: 10 -15 W m⁻²
 - => Instantaneous LW TOA flux: 5 -10 W m⁻²
- New CERES ADMs show notable improvements in TOA flux accuracy relative to ERBE, particularly for specific cloud types.
- Large regional differences between ERBE and CERES SW cloud radiative forcing at high latitudes, tropical ocean and land.